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This paper presents exact solutions using toroidal co-ordinates to the equations of 
creeping fluid motion with the no-slip boundary conditions for a toroidal particle 
translating in a direction normal to the axis of symmetry or rotating about an axis 
normal to  the axis of symmetry through an otherwise infinite expanse of quieseent 
fluid. The associated resisting force and resisting torque are computed for toroids of 
various geometrical ratios b/a,  b being the smallest radius of the open hole and 
(b  + 2a) being the radius to the outermost rim of the torus. These results are compared 
with approximate calculations based on slender-body theory and on the theory for 
interacting beads. The exact and approximate calculations become asymptotically 
equal as b/a becomes very large, but departures from the exact calculations are 
apparent for b/a less than 10-100 depending on the mode of motion and the method 
of approximation and the approximations are unreliable for b/a less than 2.0. 

1. Introduction 
This paper presents exact solutions to the equations of creeping fluid motion with 

the no-slip boundary conditions for a toroidal particle translating in a direction 
normal to the axis of symmetry or rotating about an axis normal to the axis of sym- 
metry through an otherwise infinite expanse of quiescent fluid. The associated 
resisting force and resisting torque are computed for toroids of various geometrical 
ratios b/a ,  b being the smallest radius of the open hole and (b  + 2a) being the radius 
to the outermost rim of the torus; see figure 1 .  In the case of a translating torus, no 
net torque is exerted on the body by the fluid and likewise when the torus rotates 
without translation, i t  does not experience a net force. These solutions supplement the 
exact solution of Kanwal (1961) for rotation about the symmetry axis and that of 
Payne & Pel1 (1960) and Majumdar & O’Neill (1977) for translation along the sym- 
metry axis, so that the arbitrary low-speed motion of a rigid torus through a quiescent 
fluid can now be constructed by appropriate superposition of these four solutions. 

Several approximate calculations accurate for large b/a can be found in the litera- 
ture, and we shall compare our exact calculations with these approximations. Tchen 
(1954) studied the motion of ‘skew shaped’ particles, a limiting case of which are 
toroids. He used Burgers’ (1938) method of regarding the fluid motion to be that 
induced by a continuous distribution of force along a curve through the particle. 
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The boundary conditions a t  the surface of the particle require the force distribution 
to satisfy an integral equation whose solution permits calculation of the net resisting 
forces and torques. Wu (1977) reports the results of an analysis of Johnson (1976) 
who used slender-body theory to resolve the fluid motion into fundamental flow 
singularities (Stokedet, Rotlet, etc.) distributed continuously along a circle !through 
the torque. The calculations of Tchen and Johnson are closely related, and resulting 
formulae for the resistance to motion along the symmetry axis and rotation about the 
symmetry axis are virtually identical for the two analyses. Tchen's calculation for 
asymmetric translation appears to have a serious error and he does not give results 
for asymmetric rotation. 

Yamakawa & Yamaki (1973) using methods of Kirkwood & Riseman (1948) 
studied the motion of a rigid array of touching beads placed a t  the corners of a planar 
polygon. Hydrodynamic interactions between the beads are allowed for through the 
use of the unmodified Oseen tensor and (it is to be hoped) somewhat more accurately 
through the use of the modified Oseen tensor. For polygons containing many uniform 
beads whose radii are small compared to the radius of the polygon and whose hydro- 
dynamic interaction is limited to the unmodified Oseen tensor, Yamakawa & Yamaki 
developed relatively simple asymptotic expressions for the resisting forces and torques. 
For small numbers of beads complicated sums must be computed. Bloomfield (1976), 
in private correspondence to Professor C. T. O'Konski, has computed these sum8 for 
polygons consisting of from three to ten beads for both the unmodified and modified 
Oseen tensor to give the resisting torques for rotation about the axis of symmetry 
and about a transverse axis. 

Our interest in seeking exact solutions for the motion of toroidal particles partly 
stems from the indication that some important biological macromolecules are approxi- 
mately toroidal in shape. Examples are low molecular weight circular DNA and 
acetylcholine receptor; the latter is believed to play a crucial role in the transmission 
of nerve signals. These molecules are under active investigation by biochemists. 
Among the experimental techniques employed are electro-optic birefringence relaxa- 
tion which gives information about the rotary diffusion coefficient and dynamic or 
quasi-elastic light scattering which gives information about the translational diffusion 
coefficient. To interpret these measurements accurate values of the rotary and trans- 
lational frictional coefficients for small and moderate values of b/a  are needed. Another 
possible interesting application is provided by the claim of Israelachvili, Mitchell & 
Ninham (1976) that some micelles are toroidal. 

Beyond the application of these calculations to special particles, exact values for 
frictional coefficients may be of considerable value in evaluating the accuracy of the 
Kirkwood & Riseman bead calculations which have been used extensively in macro- 
molecular hydrodynamics. 

2. Translation of a torus along a transverse axis 
A rigid open torus of geometrical ratio b/a,  b being the smallest radius of the open 

hole and (b  + 2a) being the radius to the outermost rim of the torus, moves through an 
infinite, homogeneous, incompressible fluid of density p and viscosity p which is at 
rest at an infinite distance from the torus. In  a system of Cartesian co-ordinates 
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(2, y, z )  in which z is the axis of symmetry and the plane z = 0 is a plane of symmetry 
of the body, we shall suppose that the torus translates with velocity U along the x 
axis (see figure 1). 

We assume that the Reynolds numbers Uap/,u and Ubplp are sufficiently small to 
allow us to neglect the nonlinear inertia terms in the Navier-Stokes equations of 
fluid motion. Accordingly the equations governing the flow are the Stokes’ creeping- 
flow equation 

and the equation of continuity 
vp = p v  (1)  

V . V  = Q (2) 

where v and p are respectively the fluid velocity and pressure fields. 
A t  infinity the fluid velocity v vanishes. The boundary conditions on the surface 

of the torus are conveniently expressed in terms of cylindrical polar co-ordinates 
(6,8, z )  with corresponding velocities (u, v, w) which are related to the Cartesian 
values in the ordinary way. For the case of translation with velocity U along the x 
axis, the no-slip boundary condition requires that on the particle’s surface v = Ui,, 
or equivalently 

u = U cos 8, v = - U sin 8, w = 0 (translation in x direction). (3) 

If v satisfies equations ( 1 )  and (2), then the pressurep and the vector V = v - rp/2p 
both satisfy Laplace’s equation. Guided by this fact, by the dependence of the velocity 
components on 8 required by the boundary conditions, by the work of Majumdar & 
O’Neill (1977) for the axisymmetric translation of a torus, by the analysis of Dean 
& O’Neill (1963) for the rotation of a sphere near a plane wall about an axis parallel 
to the wall, and by the analysis of O’Neill(l964) for the translation of a sphere near a 
wall in a direction parallel to the wall, we seek solutions for the translational problem 
of the following form: 

p = @u/C) 0 cos 8, 

u = g ~ { 0 +  P+O$/c}cose, 

w = & u(2 W + Z Q C }  cos 8. 

(4) 
v = &U{O- P}sin8, 

The factor c is a constant with the dimension of length whose significance will be 
apparent. Equations (4) introduce four new functions of 0 and z, namely 0, 8, 
and W to  be found in place of p, u, v and w. Substitution of (4) into (1) shows that 
these new functions must satisfy the differential equations 

where 

Furthermore, substitution of (4) into the continuity equation shows that 

aO 2 8  aP aW 
(3 + $ + Z  2) + c (z +z)  + c + 2c - az = 0. (7) 

4-2 
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When equations (4) are substituted into (3), the boundary conditions for a trans- 
lating particle, we find after a little rearrangement the following conditions to be 
satisfied on the surface of the particle: 

0 - P  = -2,  20-ow = 0, 2 0 + o & / c  = 0. (8) 

To solve the boundary-value problem expressed in (5) to (8), we introduce toroidal 
co-ordinates ( 5 , ~ )  which are related to the cylindrical polar co-ordinates by the 
formulae 

The surface 7 = yo is a torus with circular cross-section of radius a = c cosechqo, the 
centre of the cross-section in any azimuthal plane being at a distance (a + b)  = c coth 7o 
from the z axis. With a and b given, c and q0 are uniquely determined; in particular 
cosh yo = 1 + b/a. The region occupied by the fluid is defined by 0 < 5 < 2n ,  0 < 6J < 2n 
and 0 < 7 < qo. The origin 6 = z = 0 corresponds to 5 = n, 7 = 0 while infinity is given 
by 5 = 0, 7 = 0. 

For translation of the toroid in the x direction, u and v are clearly even functions of 
z whereas w is an odd function of z. Therefore by virtue of equations (9) and (4), &, 
0 and P must be even functions of 5 about 6 = 7r while w is an odd function of 6 
about E = n. From Hobson (1965) we find that solutions to ( 5 )  in toroidal co-ordinates 
for &, 0, 7 and w with the appropriate symmetry are 

m 

n= 1 

m 

n=O 

m 

n= 0 

m 

n=O 

= (cosh 7 - cos <)* z A ,  Pi-* (cosh 7) sin nt, 

& = (cosh 7 - cos 5)* z B, Pi-4 (cosh 7) cos nc, 

P = (cosh 7 - cos E)* x Cn Pn-* (cosh 7) cos nt,  

0 = (cosh 7 - cos C)* D, Pi-* (cosh 7) cos n t ,  

where the coefficients A,, B,, C, and D, are independent of 5 and 7 and PE-4 denotes 
the associated Legendre function of the first kind of order n - and degree m. It will 
be noticed that these forms for &, 0, P and w automatically satisfy the boundary 
condition of vanishing velocity a t  infinity. 

On using the expansion, given in Hobson (1965), 

m 

(cosh 7 - cost)-* = - 4 Q-4 (cosh 7) + x Qn-* (cosh 7) cos n5 ] (11) 
2J2 n n= 1 

where Qn-t denotes the associated Legendre function of the second kind of order 
n- 4, and on substituting the series expansions into the three boundary conditions 
as expressed by (8), we find 

cnPn-4 = D,Pt-+ + 4J2 7 Q ~ - & E ,  (n > O ) ,  

A ,  2 sinh ~ ~ P k - 4  = Dn-1P&6, - Dn+l P:++ (n 2 1) (12) 
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and 

B, sinh yo Pk-4 = Dm-l P L ,  8, - D, 2 cosh qo P:-* + D,+lPi+t (n L O ) ,  

where 

and 
eo = 4 and en = 1 for n 2 1, (13) 

8, = 0, 8, = 2 and 8, = 1 for n 2 2, 

and the argument of all the Legendre functions in these equations is Gosh yo. A fourth 
relationship between the coefficients A,, B,, C, and D, is required. This is provided 
by the continuity equation as expressed in equation (7). When the series expansions 
for $, 0, P and @ are substituted into (7),  we find after a great deal of manipulation: 

An--,(%- Q )  6 -An'n+An+l(n+ 9) -Bn-1(4) (n-  Q )  8, 

+ Bn(+) + Bn+l(Q) (n + 8) - cn-1(8) 8, + c n  .- ( 8 )  ',+I 

- (n  + Q )  (n + 8) = 0 (14) 

co = 0, cl = 0 and [, = 1 for n 2 2 .  (15) 

- D,-l(Q) (n - &) fn  - Q )  8, + D,(n - 8) (n + Q )  

for n 2 0 where 

On substituting ( 1 2 )  for A,, B, and C, in (14) we obtain a second-order difference 
equation for the coefficients D,, namely 

~,-18,((5-2n)X,+(+)(n--)  Wn-l-(+)' , - l - (+)(n-~)  (n -8 ) )  

+Dn{(2n + 3) Xn+18,+1- (n -  8) Yn-,(Yn + 8,) -QW, +', + (n -8 )  (n+ +I} 
+ D,+,{(5 + 2%) Yn - Q(n + 8) W , + 1 -  +Zn+, - (ii) (n + 3) (n ++I} 

= ($1 K-lEn-18n-Ken + (4) K+len+l,  (16) 

for n 2 0 where E,, 8, and [, are as defined above and 

(17) I V,  4.J2Qn-+/nEL-+, 

W, = 4 cosh yoP2,4/2 sinh yoPk-t, 

X ,  = P",_a/2 sinhy,P&, 

Y, 3 Pi+)/2 sinh qo Pk+ 

z, = Pt-,/P,-,, 

and again the argument of all the Legendre functions is cosh qo. 
The solution D, we seek must converge to zero as n becomes large and this permits 

the required solution to be found by successive truncation to a finite set of linear 
equations. Once the values of D, are known, A,, B, and C, are readily computed from 
( 1 2 ) .  In  carrying out these numerical calculations sufficient terms have been retained 
for each value of b/a  so that the calculated forces are correct to at  least four significant 
figures. 

The force F acting on the torus is given by 

F =  R,.dS s, 
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FIGURE 1. Comparison of exact and approximate dimensionless force coefficients 
for translation of a torus along a transverse axis. 

where R, is the stress vector associated with the direction n of the outward normal 
at any point on the surface of the torus. Substituting the derived expressions for the 
pressure and velocity gradients evaluated at  the surface of the torus and carrying out 
the indicated integration with aid of integral identities of the type 

which are derivable from the Fourier cosine expansion in (1  1 )  and its derivatives with 
respect t o  7, we obtain 

The details are not given here because it is possible to derive expressions for the force 
much more simply from the far-field expressions for the fluid velocity. At a great 
distance from the torus the flow field must approach that associated with application 
of a point force F, in the x direction applied at  the origin. This flow field is given by 
Happel & Brenner (1965) in Cartesian co-ordinates as (FX/8npr3) [ ( r2+x2) ,  xy, xz] 
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1 + b/a f x  = f, f z  s x  = S Y  92 

1.01 0.8422 0.9351 0.6485 0.7961 
1.1 0-8340 0.9318 0.6362 0.7851 
1.2 0-8255 0.9286 0.6238 0.7742 
1.4 0.8100 0.9227 0.6027 0.7545 
1.6 0.7964 0.9 172 0.5855 0.7371 
1.8 0-7842 0.9121 0.5711 0.7217 
2 0.7733 0-9072 0.5590 0.7078 
3 0.7318 0.8846 0.51 84 0.6550 
4 0.7032 0.8647 0.4943 0.6189 
5 0.681 7 0.8471 0.4776 0.5920 
6 0.6644 0.8316 0.4646 0.5708 
8 0.6377 0.8055 0.445 1 0.5388 

10 0.61 74 0.7843 0-4304 0.5150 
20 0.6580 0.7168 0.3857 0.4473 
40 0.5045 0.6523 0.3435 0.3888 
60 0.4764 0.6175 0.3206 0-3589 
80 0.4579 0.5944 0.3055 0.3397 

100 0.4442 0-5773 0.2943 0.3257 

Note: Calculations of Dorrepaal et al. (1976) for the axisymmetrical motions of a closed torus 
give fe = 0.9353 and g, = 0.7969, while calculations of Majumdar & O'Neill (1979) for the 
asymmetrical motions give fi = f, = 0.8434 and gx = g, = 0.6498 when b/a = 0. 

TABLE 1 .  Values of the dimensionless force and torque coefficients for 
toroids of various geometry 

where r2 = x2 + y2 + 22 = G2 + 9. Thus Fx must also be given by the following three 
limits as r + co, i.e. 6 and 7 + 0, 

Fx = lim {8npr32u/xz}, 
r+m 

Fx = lim (87rpr3(usin 0 + w cos B)/xy}, 

Fx = lim {87r,%r3(u cos 0 - w sin B) / ( r2  + x2)} .  

r+m 

r+m 

Carrying out the indicated limits results in two separate expressions for Fx: 

W m 
Fx = j27rpUc x (4n2- 1 )  B, = 4J2npUc x Cn (21) 

n=O n=O 

which are consistent with (19). Having alternate expressions for the force to some 
extent permits a check on the accuracy of our numerical calculations. 

A dimensionless force coefficient f, can be defined as the ratio of Itj, to  the force 
acting on a sphere of radius ( b  + 2a)  translating with velocity U ;  the length ( b  + 2a)  
is chosen because it results in values off, which do not vary greatly even for large 
changes in b/a  and therefore are suitable for interpolation. 

m 
4 2  2 (4n2-l)Bn 2 j 2  5 cn 

(22) 
n=O - n=O F X  - 

fx = 6n,uU(b + 2a) - 6(coth T~ + cosech q0) - %(coth T~ + cosech v0)' 
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FIOURE 2. Comparison of exact and approximate dimensionless force coefficients 
for translation of a torus along its symmetry axis. 

Calculated values off, are listed in table 1 for a range of values of 1 + b/a = cosh r,, 
from unity to 100. These are also shown in figure 1 where they are compared with the 
approximate calculation valid for large b/u  discussed in the introduction. 

Calculated values off, for translation along the axis of symmetry are included in 
table 1 and are shown in figure 2. 

3. Rotation of a torus about a transverse axis 
The calculation of the flow field for rotation resembles that given above for trans- 

lation. For the case of rotation with angular velocity SZ about the y axis, the no-slip 
boundary condition requires that on the particle's surface v = Qzi, - Qxi, or equiva- 
lently in cylindrical co-ordinates 

(23) u = !&cost?; v = -Rzsint?; w = -SZnBcost?. 

We assume that the Reynolds number Qa2p/,u is sufficiently small to allow us to 
neglect the nonlinear inertia terms in the Navier-Stokes equations. Accordingly, the 
equations governing the Aow are equations (1)  and (2). As with the case for translation, 
guided by the dependence of the velocity components on 6 required by the boundary 
conditions, we again seek golutions of the form given by ( 4 ) ;  U should be replaced by 
Ro and the four new functions 4, 0, P and @ while still satisfying (5), (6) and (7) 
differ from the corresponding functions for translation. In  fact, the symmetry of the 
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rotational problem requires that u, and v be odd functions of z while w is an even 
function of z. In  toroidal co-ordinates, &, 0 and P are odd functions of 5 while J? is 
an even function of 6.  The solutions to (5) with the appropriate symmetry are 

I W w = (cosh q - COB t ) 4  x A ,  Pi-+ (cosh q) cos nt, 
n=O 

I m 
& = (cosh q - COB 5)s Bn Pi-4 (cosh 7) sin nt, 

n= 1 

I W 

0 = (cosh q - cos 5)i C, Pn-* (cosh q) sin nt, 

= (cosh 7 - COB 5)i x D, PZ-4 (cosh q) sin nt, 

n= l  

W 

n=l 

where An, B,, C, and D, are new coefficients different from those calculated for 
translation. It will be noted that these forms for &, 0, and w automatically satisfy 
the boundary condition of vanishing velocity at infinity. 

Substituting equations ( 4 )  with U replaced by Qc into equations (24 )  gives, after 
a little rearrangement, the following conditione to be satisfied on the surface of the 
particle : 

0- P = -2z/c,  ZO-GP = G / c ,  2 8 + G Q / c  = 0. (25 )  

Use of the expansion in equation (1  1) and its derivative with respect to 5, namely 

W 

sin E/(cosh 7 - cos 5)* = (4J2/7r) I; &,-t (cosh 7) sin n5 (26)  
n=l  

converts these three boundary conditions into the following: 

C,Pn-4 = DnPi-a+ (8$ /n )n&, -~  (n 2 11, 

A ,  2 sinh qo Pi-$ = - Dn-l P$-+(j, + D,+, P$+$ + ( 8 4 2 / n )  sinhqQk, (n 2 0) ,  

B, sinh 7oPi-+ = Dn-,Pi-+ cn - D, 2 cosh qo PK-4 + Dn+, Pi+)  (n 2 I ) ,  (27 )  

where cn is defined by (1 5)  and again the argument of all the Legendre functions is 
cosh qo. The fourth relationship between the coefficients is found by substituting the 
series expansions of (24 )  into the continuity equation as expressed by ( 7 ) .  The result 
after much tedious algebra is 

- (n- Q) An-lSn + 2nAn- (n+8) An+,-  t (n-  8) Bn-1 Cn 

+8Bn + !An+ Q) Bn+,- (+) Cn-1 5n +Cn - (+I Cn+, 

- 4(n- 

-&(n+#)(n+Q)Dn+l=O ( n >  1) (28)  

(n- 8) Dn-15, + (m - 8) (n + 8) Dn 

where 8, is given by ( 1 3 ) .  On substituting (27 )  into (28 )  we obtain a second-order 
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Dn-1 Cn{(n- Q) (Xn-1 +Yn-I - Q) + (5 - 2n) I n -  (4) zn-1- (4) (n-Q) (n- 3)) 
+ Dn{ -2(n- Q) Yn-1-5(Xn +Yn - 3) + 2(n+ Q) Xn+l+ 2, + (n-8)  (n+ 8)) 
+ Dn+l{('n + 5 )  Yn- (n+ 9 )  (Xn+1 +%+I - 4) - (4) zn+1- (4) (n+ 8) (n + 

= (n - 1) KWl - 2nV, + (n + 1) V,+1+ (n - Q) Un-l - 2nUn + (n + 9 )  Un+l, (29)  

Un = 4 J2QL+/nPL+, (30) 

for n 2 1 where V,, X,, Y, and Zn are as defined in equations (17) and 

with the argument of all Legendre functions again being cosh qo. 
The coefficients D, must converge to zero as n increases to infinity, which permits 

the required solution to be found by successive truncation to a finite set of linear 
equations. Once the values of D, are known, A,, B, and C, are readily computed from 
equations (27). In  carrying out these numerical calculations sufficient terms have been 
retained for each value of b/a so that the calculated torques are correct to at least four 
significant figures. 

The torque G acting on the torus is given by 

G =  ( r x R n ) . d S  s. 
when the moments of the surface stress Rn are taken about the origin 6, = z = 0. 
Substituting the derived expressions for the pressure and velocity gradients evaluated 
at the surface of the torus and carrying out the indicated integrations shows that the 
resisting torque has Cartesian components (0, - G,, 0 )  with 

m 

G, = J2nplncS 2 {(an2 - 1) An - 4nC,). 
n=O 

The details are not given here because it is possible to derive expressions for the torque 
much more simply from the far-field expressions for the fluid velocity. At a great 
distance from the torus the flow must approach that associated with a point couple 
G, in the y direction applied at the origin. This flow field is given by Happel & Brenner 
(1965) in Cartesian co-ordinates as (G,/8npr3) (2, 0, - x). Thus G, must also be given 
by the following limits as r + 00, i.e. as 6 and q + 0. 

G, = lim {8nprS(u cos 8 - v sin B)/z), 
r+m 

G, = lim { - 8mpr3w/x). 
r-m 

Carrying out the indicated limits results in two expressions for the torque: 

m m 

n=O n = l  
G, = 2 J2npRc3 (4n2 - 1) A, = - 8 J2npRcs nC,, 

(33 )  

(34)  

which are consistent with equation (32). 
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Comparison of exact and approximate dimensionless torque coefficients for rotation 
about a transverse axis. Bloofield’s results: 0 ,  unmodified tensor; ‘I, modified 

A dimensionless torque coefficient gy can be defined as the ratio of G, to the torque 
acting on a sphere of radius (b + 2a) rotating with angular velocity a; again the length 
(b + 2a) is chosen because it results in values of gy which do not vary greatly even for 
large changes in b/a and therefore are suitable for interpolation. 

m 
J2 (4n2- 1) An ~2 ncn 

(35) 
G, - n=O n=l  

gy = 87rpQ(b + 2 ~ ) ~  - 4(coth 7, + cosech T,)~ = - (coth 7, + cosech 7,)s’ 

Calculated values of gy are listed in Gable 1 for a range of values of 1 + b/u = cosh r ] ,  
from unity to 100. These are also shown in figure 3. 

Calculated values of gs for rotation about the axis of symmetry are included in 
table 1 and are shown in figure 4. 

4. Discussion 

translation along a transverse axis and the dimensionless torque coefficient 
Numerical values of the dimensionless force coefficient f, = Fs/6npU(b + 2a) for 

g,, = C y / 8 ~ p i 2 ( h  + 2 ~ ) ~  
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FIQTJRE 4. Comparison of exact and approximate dimensionless torque coefficients for rotation 
of a torus about ite symmetry axis: Bloomfield's results: 0 ,  unmodified; 'I, modified tensor. 

for rotation about a transverse axis were computed from equations (21) and (35) 
respectively; these are listed in table 1.  For convenience we have also listed in table 1 
values of the force coefficient f, = F,/6npU(b + 2a) for translation along the symmetry 
axis and values of the torque coefficient g, = GZ/8ll;ui2(b + 2 ~ ) ~  for rotation about the 
symmetry axis. 

In  figures 1-4 we compare these exact values with the approximations discussed in 
the introduction. It is seen that the exact and approximate values become asymptotic- 
ally equal as b / a  becomes very large but departures from the exact calculations are 
apparent for b / a  less than about 10-100, depending on the mode of motion and the 
method of approximation. Poorest agreement is with the bead calculations of Yama- 
kawa & Yamaki (1973) for rotation about the symmetry axis. This may be explained 
because for rotation about the symmetry axis, each bead moves in the wake of an 
adjacent bead. We know from the exact solution to the equations of creeping motion 
for equal touching spheres that the correction to Stokes law is greater for two spheres 
moving along their line of centres than it is for motion normal to the line of centres. 
Moreover, the first term correction to Stokes law for touching spheres moving along 
their line of centres as given by the method of reflexions (which is equivalent to use 
of the unmodified Oseen tensor in the bead calculations) is 0-571 compared to the 
exact value of 0.645, or an 11 yo difference; the error will be compounded in a chain 
because each sphere has two immediate neighbours as well as more remote neighbours. 
The first term correction by the method of reflexions to Stokes law for touching spheres 
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moving normal to the line of centres is 0.727 compared to the exact value of 0.716, or 
only a 1.5 % difference. Thus it is not surprising that the bead calculation is poorest 
for rotation about the symmetry axis. Use of the modified Oseen tensor shifts the 
calculations in the correct direction; however the shift is not adequate to achieve 
correspondence with the exact values, at least for small numbers of beads. 

Best agreement between the bead calculations and the exact values occurs for the 
translation along the symmetry axis. This is consistent with the above discussion 
because for this motion, the beads do not move in wakes behind other beads. Infer- 
mediate cases are rotation about a transverse axis and translation along a transverse 
axis. In  the former case, for which the calculations of Bloomfield (1976, private 
correspondence to Professor C. T. O’Konski) are available, use of the modified Oseen 
tensor results in poorer agreement with the exact values for five or more beads. 

The slender body theory of Johnson (1976) and Tchen (1954) is somewhat more 
accurate than the bead calculations except in two cases where the formulae diverge 
for bla on the order of unity. When the next level of slender-body calculation, as 
reported by Johnson & Wu (1979), in which terms of O(a/b)2 are retained, is used, 
figures 3 and 4 show excellent agreement with the exact calculation for b/u  as small 
as 2.0. 

We note in passing that g,/g, -+ 1 as bla  -+ 00 so that a long slender ring has the 
same resistance to rotation about its symmetry axis as it has to rotation about a trans- 
verse axis. The ratio fJf, approaches $ as b/a + 00. These limiting ratios were 
established by using asymptotic expansions of the Legendre functions for large 7 
(i.e. large b/u) and then retaining only the leading terms in the infinite sums for f,, 
f,, g, and gz. These limits can also be verified using the asymptotic formulae of Johnson 
& Wu (1979). 

S. L. Goren and C. T. O’Konski are currently exploring the application of toroidal 
models to acetylcholine receptor, low molecular weighti circular DNA, and other 
macromolecules. 
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